上海博众测量技术有限公司

Bodhi (Shanghai) measurement technology Co.,Ltd. NO.32,ShuPing Road,JiadingDistrict,ZIP201808, Shanghai R.P.China TEL: 0086 21 6630 8161/62/63 FAX: 0086 21 6630 8167

USER'S GUIDE

Vaisala Multiparameter Transmitter DPT145 for SF₆ Gas

Table of Contents

CHAPTER 1

GENERAL INFORMATION	.7
About This Manual	. 7
Contents of This Manual	. 7
Version Information	. 8
Related Manuals	. 8
Documentation Conventions	. 8
Safety	. 9
ESD Protection	10
Recycling	10
Regulatory Compliances	11
Patent Notice	11
Trademarks	11
Software License	12
Warranty	12

CHAPTER 2

PRODUCT OVERVIEW	
Introduction to DPT145	13
Basic Features and Options	14
Transmitter Parts	
Weather Shield	

CHAPTER 3

FUNCTIONAL DESCRIPTION	
Measurement Needs of SF ₆ Insulation	17
Sensor Technology	
MPS1 Multiparameter Sensor	
DRYCAP® Technology	
Auto-Calibration	
Sensor Purge	
BAROCAP® Technology	
DPT145 Start-up Sequence	

CHAPTER 4

NSTALLATION	21
Transmitter Configuration Before Installation	21
Selecting the Location	22
Warning – Read Before Installation	23
Installation Without Weather Shield	24
Installation With Weather Shield	25
Wiring	
Standard Wiring	

	Alternate Wiring for Power Supply
	Stabilization of Dewpoint Reading After Installation
CHAPTER 5	
OPERATIO	N
	Transmitter Start-Up
	Serial Communication
	Connecting to the Serial Interface
	Installing the Driver for the USB Service Cable
	Terminal Application Settings
	List of Serial Commands33
	Device Information
	Show Device Information34
	Show Currently Active Errors
	Show Command List
	Show Firmware Version
	Show Serial Number
	Serial Line Output Commands
	Start Measurement Output
	Stop Measurement Output
	Output a Reading Once 37
	Configuring Macourement Decemeters
	Set Mixing Patio
	Set Molar Weight of Other Gas
	Set Pressure Normalization Temperature 38
	Set Measurement Output Format
	Select Unit
	Configuring Serial Line Operation41
	Set Serial Line Operating Mode41
	Set Serial Line Settings
	Set Transmitter Address42
	Set Serial Line Response Time43
	Other Commands43
	Opening the Transmitter in POLL Mode43
	Closing the Connection to a Transmitter in POLL Mode44
	Show Transmitter Uptime
	Reset Transmitter
	Restore Factory Settings
	Modbus Communication
	Addressing With Modbus Protocol
	Modbus Mode 45
	Configuration Commands Related to Modbus 46
VIAIN (ENA	NUE
	Periodic Maintenance47
	Cleaning
	Calibration and Adjustment
	Repair Maintenance49

CHAPTER 7

TROUBLESHOOT	TING	
Solvi	ing Typical Problems	
Error	r Messages	
Unkn	nown Serial Settings	
Tech	inical Support	
Prod	uct Returns	

CHAPTER 8

TECHNICAL DATA	54
Specifications	54
Spare Parts and Accessories	57
Dimensions in mm	57

APPENDIX A

MODBUS REFERENCE	60
Default Communication Settings	60
Supported Modbus Functions	60
Modbus Register Map	61

List of Figures

Figure 1	DPT145 with DILO DN20 Adapter	14
Figure 2	DPT145 Transmitter Parts and Adapters	15
Figure 3	Weather Shield	16
Figure 4	MPS1 Sensor	18
Figure 4	DPT145 Startup Sequence	20
Figure 5	DPT145 Configuration with the MI70 Indicator	21
Figure 6	Indoor Installation in a Circuit Breaker	22
Figure 7	Wiring Non-Isolated RS-485	28
Figure 8	Wiring Power Supply Using Port I	29
Figure 9	PuTTY Terminal Application	33
Figure 10	Comparing Dewpoint Readings on MI70	48
Figure 11	DPT145 Dewpoint Measurement Accuracy	55
Figure 12	DPT145 with DILO DN20 Adapter	57
Figure 13	DPT145 with DILO DN8 Adapter	58
Figure 14	DPT145 with ABB Malmkvist Adapter	58
Figure 15	DPT145 with Alstom G1/2" Adapter	59
Figure 16	DPT145 with DILO DN20 Adapter and Weather Shield	59
_		

List of Tables

Table 1	Manual Revisions	8
Table 2	Related Manuals	8
Table 3	Output Parameters of DPT145	.13
Table 4	Default Serial Interface Settings	.32
Table 5	List of Serial Commands	.33
Table 6	FORM Command Parameters	.40
Table 7	FORM Command Modifiers	.40
Table 8	Selection of Output Modes	.41
Table 9	Configuration commands for Modbus RTU	.46
Table 10	Troubleshooting Table	.50
Table 11	Error Messages	.51
Table 12	Measured Parameters	.54
Table 13	Calculated Parameters	.54
Table 14	Performance	.54
Table 15	Operating Environment	.55
Table 16	Outputs	.55
Table 17	General	.56
Table 18	DPT145 Spare Parts and Accessories	.57
Table 19	Default Communication Settings	.60
Table 20	Supported Function Codes	.60
Table 21	Modbus Register Map	.61
Table 22	Device Identification Objects	.62

CHAPTER 1 GENERAL INFORMATION

This chapter provides general notes for the manual and the DPT145.

About This Manual

This manual provides information for installing, operating, and maintaining Vaisala Multiparameter Transmitter DPT145 for SF₆ Gas.

Contents of This Manual

This manual consists of the following chapters:

- Chapter 1, General Information, provides general notes for the manual and the DPT145
- Chapter 2, Product Overview, introduces the features, advantages, and the product nomenclature.
- Chapter 3, Functional Description, describes the primary application and the sensor technology of DPT145.
- Chapter 4, Installation, provides you with information that is intended to help you install the DPT145.
- Chapter 5, Operation, contains information that is needed to operate the DPT145.
- Chapter 6, Maintenance, provides information that is needed in basic maintenance of the DPT145.
- Chapter 7, Troubleshooting, describes common problems, their probable causes and remedies, and provides contact information for technical support.
- Chapter 8, Technical Data, provides the technical data of the DPT145.

Version Information

Table 1Manual Revisions		
Manual Code	Description	
M211371EN-C	This manual. Added a minimum baud rate requirement when using the Modbus protocol. Added a packing recommendation for return shipment.	
M211371EN-C	Previous version.	

Related Manuals

Table 2Relate	Related Manuals	
Manual Code	Manual Name	
M211369EN	DPT145 Quick Guide	

Documentation Conventions

Throughout the manual, important safety considerations are highlighted as follows:

WARNING	Warning alerts you to a serious hazard. If you do not read and follow instructions very carefully at this point, there is a risk of injury or even death.	
CAUTION	Caution warns you of a potential hazard. If you do not read and follow instructions carefully at this point, the product could be damaged or important data could be lost.	

NOTE Note highlights important information on using the product.

Safety

The DPT145 transmitter delivered to you has been tested for safety and approved as shipped from the factory. Note the following precautions:

WARNING	Ground the product and verify outdoor installation grounding periodically to minimize shock hazard.
---------	---

CAUTION	Do not modify the unit. Improper modification can damage the product or lead to malfunction.
	or lead to malfunction.

CAUTION	Do not drop or hit the transmitter. The sensor is fragile and may break from a sudden shock.
	When transporting the transmitter, use the original shipping box from Vaisala.

CAUTION	Do not open the connection between the adapter and the transmitter. They are connected at the factory, and the connection should remain unopened to guarantee tightness.
	Use tools only on the nut of the adapter, where the transport protection cap is connected.

NOTE	Keep the transmitter dry and clean.
	Do not remove the yellow transport protection cap before you are ready to install the transmitter. Uncapped transmitters will absorb moisture which will affect the dewpoint measurement.

NOTE Connect the transmitter directly to the main SF₆ gas volume, not behind a sampling line.
 After installation, the transmitter will have a small amount of moisture inside it. In still, dry gas it takes a long time until vapor pressure inside the measurement cell reaches equilibrium with the main gas tank. It is not unusual for the stabilization of the dewpoint reading to take several days after installation.

ESD Protection

Electrostatic Discharge (ESD) can cause immediate or latent damage to electronic circuits. Vaisala products are adequately protected against ESD for their intended use. It is possible to damage the product, however, by delivering electrostatic discharges when touching, removing, or inserting any objects inside the equipment housing.

To make sure you are not delivering high static voltages yourself:

- Handle ESD sensitive components on a properly grounded and protected ESD workbench.
- When an ESD workbench is not available, ground yourself to the equipment chassis with a wrist strap and a resistive connection cord.
- If you are unable to take either of the above precautions, touch a conductive part of the equipment chassis with your other hand before touching ESD sensitive components.
- Always hold component boards by the edges and avoid touching the component contacts.

Recycling

Recycle all applicable material.

Dispose of the unit according to statutory regulations. Do not dispose of with regular household refuse.

Regulatory Compliances

The Vaisala Multiparameter Transmitter DPT145 for SF_6 Gas is in conformity with the provisions of the following EU directive(s):

- EMC-Directive

Conformity is shown by compliance with the following standards:

- EN 61326-1: Electrical equipment for measurement, control, and laboratory use EMC requirements for use in industrial locations.
- EN 550022: Information technology equipment Radio disturbance characteristics Limits and methods of measurement.

CE

Patent Notice

The Vaisala Multiparameter Transmitter DPT145 for SF₆ Gas is protected by, for example, the following patents and their corresponding national rights:

Finnish patent 98861, French patent 6650303, German patent 69418174, Japanese patent 3585973, UK patent 0665303, and U.S. patent 5607564.

Trademarks

BAROCAP® and DRYCAP® are registered trademarks of Vaisala Oyj.

Windows® is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Software License

This product contains software developed by Vaisala. Use of the software is governed by license terms and conditions included in the applicable supply contract or, in the absence of separate license terms and conditions, by the General License Conditions of Vaisala Group.

Warranty

Please observe that any such warranty may not be valid in case of damage due to normal wear and tear, exceptional operating conditions, negligent handling or installation, or unauthorized modifications. Please see the applicable supply contract or Conditions of Sale for details of the warranty for each product.

CHAPTER 2 PRODUCT OVERVIEW

This chapter introduces the features, advantages, and the product nomenclature.

Introduction to DPT145

Vaisala Multiparameter Transmitter DPT145 for SF_6 Gas is a digital transmitter with a non-isolated RS-485 output. Its compact size makes it well suited for integration into OEM systems.

DPT145 is always delivered with an integrated mechanical adapter: DILO DN20, DILO DN8, ABB Malmkvist, or Alstom G1/2". The connection between the adapter and the transmitter is helium leak tested at the factory.

DPT145 combines online measurement of dewpoint, pressure, and temperature. DPT145 also calculates four other quantities, including SF_6 density.

Parameter	Abbreviation	Metric Unit	Non-Metric Unit
Dewpoint/frost point temperature*	Tdf	°C	°F
Dewpoint/frost point temperature*, converted to atmospheric pressure	Tdfatm	°C	°F
ppm moisture, by volume	H20	ppm	ppm
Pressure, absolute	Р	bara	psia
Pressure, normalized to 20 °C (68 °F)	Pnorm	bara	psia
Density	Rhoo	kg/m ³	kg/m ³
Temperature	Т	°C	°F

Table 3Output Parameters of DPT145

* When the dewpoint is below 0 °C, the transmitter outputs frostpoint for T_d

Basic Features and Options

- Utilizes the Vaisala MPS1 multiparameter sensor with Vaisala's BAROCAP® and DRYCAP® technologies.
- Measurement ranges of measured parameters:
 - Dewpoint $-50 \dots +30 \ ^{\circ}C \ (-58 \dots +86 \ ^{\circ}F) \ T_d$
 - Pressure, absolute 1 ... 12 bar (14.5 ... 174 psi)
 - Temperature -40 ... +80 °C (-40 ... +176 °F)
- Measurement is configurable for pure SF₆ or mixed gas.
- Non-isolated RS-485 digital output.
- Easy verification of dewpoint measurement with the Vaisala DRYCAP® Hand-Held Dewpoint Meter DM70.
- Delivered with an integrated mechanical adapter that must be specified during ordering. The adapter options are:
 - DILO DN20
 - DILO DN8
 - ABB Malmkvist
 - Alstom G1/2"
- Optional accessories:
 - Weather shield: necessary for outdoor installations.
 - USB service cable for configuration and calibration.

Figure 1DPT145 with DILO DN20 Adapter

Transmitter Parts

1107-033

Figure 2 DPT145 Transmitter Parts and Adapters

- 1 = Port I: Supply voltage only (optional)
- 2 = Port II: RS-485 line and supply voltage
- 3 = Type label
- 4 =Connection between transmitter body and adapter do not open
- 5 = DILO DN20 adapter: 50 mm nut with M45X2 inner thread / DILO DN8 adapter: 32 mm nut with M26X1.5 inner thread
- 6 = ABB Malmkvist adapter
- 7 = Alstom G1/2" adapter
- 8 = Transport protection cap remove only when ready to install

Weather Shield

The transmitter and its connectors are rated IP65. However, installing the transmitter outside without protection is not recommended. The installation should be such that the transmitter is not exposed to direct rain, icing, or solar radiation.

A suitable weather shield is available from Vaisala. The weather shield is designed to clamp over the adapter, and to accommodate the available cable options.

1108-022

Figure 3 Weather Shield

DPT145 is assembled to the weather shield at the factory if the weather shield is ordered with the transmitter. Weather shields are also available separately.

CHAPTER 3 FUNCTIONAL DESCRIPTION

This chapter describes the primary application and the sensor technology of DPT145.

Measurement Needs of SF₆ Insulation

Sulphur hexafluoride (SF₆) is used as an insulating gas in transmission and distribution equipment such as switchgears and circuit breakers. It effectively prevents arcing during switch-offs and protects equipment from failures.

In order to maintain SF_6 insulation properties and to reduce the formation of unwanted secondary decomposition products, the amount of water vapor in the gas insulated system (GIS) should be kept to a minimum. Also, the SF_6 system needs to be pressure tight for best insulation performance and safe operation of the equipment.

There is always some diffusion of water molecules from high ambient water vapor pressure to low vapor pressure inside the system. The more connection points the higher the diffusion rate. DPT145 is ideally suited to the online monitoring of dewpoint, pressure, and temperature in such a system. Sudden and minor leakages are immediately detected by the direct normalized pressure measurement, while online dewpoint measurement alerts the user to moisture issues.

With online monitoring, on-site visits can be kept to a minimum. The long calibration interval of DPT145 means practically service-free operation.

Sensor Technology

MPS1 Multiparameter Sensor

DPT145 combines Vaisala's proven DRYCAP® sensor technology for industrial dewpoint measurement with BAROCAP® pressure sensor technology. Both technologies are integrated on the same MPS1 multiparameter sensor element, allowing for a highly compact and versatile transmitter.

Figure 4 MPS1 Sensor

There are several important advantages in using a transmitter with an integrated sensor:

- Reduces installation work and cost.
- Improves the leak tightness of the system as connection points are minimized.
- Enables online monitoring of all supported parameters.

DRYCAP® Technology

Vaisala DRYCAP® dewpoint measurement technology ensures accurate measurement with excellent long term stability. This results in very low maintenance requirements for the transmitter. The lasting performance is achieved with microprocessor technology and software that automatically performs self-diagnostic functions in addition to the normal dewpoint measurement. The self-diagnostic procedures that are conducted are called auto-calibration and sensor purge.

Auto-Calibration

The auto-calibration feature of the MPS1 multiparameter sensor is an automatic procedure which greatly reduces the possible drift in the dry end of the dewpoint measurement. It is performed at one hour intervals, and when the power is switched on. During auto-calibration the sensor is warmed for a short period (< 1 min) and the sensor capacitance values are evaluated at the elevated temperature. The possible dry end drift is then corrected to correspond to the calibrated values. During the auto-calibration the transmitter outputs the dewpoint value prior to the procedure.

Auto-calibration is carried out only if several criteria for the measurement environment are fulfilled. This ensures the reliability of the adjustments, and maintains the excellent long term stability. These criteria include, for example, a stable enough moisture level in the measured atmosphere. If the conditions are not fulfilled, the autocalibration function is postponed until satisfactory conditions are reached.

Sensor Purge

Sensor purge is also an automatic procedure that minimizes the drift at the wet end readings of the dewpoint measurement. Sensor purge is performed twice a day, and five minutes after the power is switched on. The sensor is heated for several minutes which will then evaporate all excess molecules out of the sensor polymer. This, together with the autocalibration, results in a very small drift of the sensor due to the very linear behavior of the polymer technology.

BAROCAP® Technology

The BAROCAP® silicon capacitive absolute pressure sensor was developed by Vaisala for barometric pressure measurement applications. The BAROCAP® sensor has excellent hysteresis and repeatability characteristics, low temperature dependence, and a very good long-term stability. The ruggedness of the BAROCAP® sensor is outstanding and the sensor is resistant to mechanical and thermal shocks. The pressure measurement of the MPS1 multiparameter sensor is based on an advanced RC oscillator and reference capacitors against which the capacitive pressure sensor is continuously measured. The microprocessor of the transmitter performs compensation for pressure linearity and temperature dependence.

DPT145 Start-up Sequence

When the transmitter is powered up, it will perform the sequence shown in Figure 5 below. After a five-second startup, the transmitter will measure normally for five minutes, after which it will perform the sensor purge and auto-calibration functions. This can take up to six minutes, during which time the output is frozen: it will display the last measured values before the sensor purge began.

Normal operation and output is typically achieved no later than 11 minutes after startup. The sensor purge will repeat every 12 hours, and auto-calibration every hour. The output will again be frozen for their duration.

Figure 5 DPT145 Startup Sequence

NOTE The transmitter always performs this sequence when starting up. Keep the transmitter continuously powered to optimize its measurement performance and availability.

CHAPTER 4

This chapter provides you with information that is intended to help you install the DPT145.

Transmitter Configuration Before Installation

Depending on your application, you may need to configure some transmitter features before physically installing it.

1. By default, DPT145 transmitters are configured for single transmitter operation. Serial operation mode is **STOP** and address is **0**.

To configure transmitters for operation on a common line, you must give each transmitter a unique address (range 0 ... 255) and set their serial operation mode to POLL.

- 2. The default serial line settings may not be right for your RS-485 line.
- 3. You may need to change the transmitter's settings for the measured gas. You can configure the mixing ratio of SF_6 , and the molar weight of the other gas.

An easy way to configure the measured gas is to connect the DPT145 to the MI70 indicator using the MI70 connection cable (Vaisala order code 219980). You can change the settings in the **Measurement Settings** menu. See Figure 6 below.

ETTINGS kg/mol

Figure 6 DPT145 Configuration with the MI70 Indicator

For full configuration options, use the USB service cable and a terminal program on a PC. Instructions for using the serial line and the serial commands are provided in Chapter 5, Operation, on page 30.

Selecting the Location

Online dewpoint measurement in still gas is much more demanding than pressure or temperature measurement. A very tight installation is crucial: not only pressure tight, but also vapor tight.

It is always best to connect the transmitter directly to the main SF_6 gas volume, **not behind a sampling line**. Avoid extension pipes, T-pieces, and multi-connection points.

1108-034

Figure 7 Indoor Installation in a Circuit Breaker

Warning – Read Before Installation

CAUTION

Do not drop or hit the transmitter. The sensor is fragile and may break from a sudden shock.

When transporting the transmitter, use the original shipping box from Vaisala.

CAUTION

Do not open the connection between the adapter and the transmitter. They are connected at the factory, and the connection should remain unopened to guarantee tightness.

Use tools only on the nut of the adapter, where the transport protection cap is connected.

NOTE

Keep the transmitter dry and clean.

Do not remove the yellow transport protection cap before you are ready to install the transmitter. Uncapped transmitters will absorb moisture which will affect the dewpoint measurement.

NOTE

Connect the transmitter directly to the main SF₆ gas volume, not behind a sampling line.

After installation, the transmitter will have a small amount of moisture inside it. In still, dry gas it takes a long time until vapor pressure inside the measurement cell reaches equilibrium with the main gas tank. It is not unusual for the stabilization of the dewpoint reading to take several days after installation.

Installation Without Weather Shield

1. Remove the yellow transport protection plug when you are ready to install the transmitter.

2. Install the transmitter to the mechanical coupling and tighten by hand.

3. Use a wrench to tighten the connection. Turn from the adapter, not from the transmitter body!

Use sufficient force to achieve a tight installation. The system must be leak-free for accurate measurement.

4. Connect the cable to port II on the transmitter.

Use a cable with a suitable connector for your installation (straight or angled).

Let some of the cable hang from the back of the transmitter, so that condensation cannot run along the cable to the transmitter.

Installation With Weather Shield

1. When DPT145 is ordered with the weather shield, the transmitter is delivered already attached to the shield.

If you have ordered the weather shield separately, attach the transmitter to the weather shield before continuing this procedure. Fit the clamp of the weather shield over the adapter, not the transmitter body. For ABB Malmkvist and Alstom G1/2" type adapters, place the clamp over the notches in the adapter.

2. Use an 8 mm box-end wrench to loosen the four bolts that hold the weather shield cover. Remove the cover.

It is not necessary to remove the bolts, they can remain in place during installation.

3. Remove the yellow transport protection plug. Make sure the surfaces are clean and dry.

4. Install the transmitter to the mechanical coupling and tighten by hand. Try to keep the weather shield level.

5. Use a wrench to tighten the connection. Turn from the adapter, not from the transmitter body!

Use sufficient force to achieve a tight installation. The system must be leak-free for accurate measurement.

with a straight connector.

6. Connect the cable to port II on the transmitter, and route the cable to the cable clamp on the underside of the weather shield. Attach the cable using a crosshead screwdriver.

Note: Let some of the cable hang from the back of the transmitter, so that condensation cannot run along the cable to the transmitter.

For cables with a straight connector: move the rubber plug to the bottom hole and route the cable from the back of the weather shield.

7. Replace the weather shield cover using an 8 mm box-end wrench.

Wiring

Standard Wiring

Connect supply voltage and RS-485 to port II. Port I does not need to be used at all, and can remain covered.

1108-015

Figure 8 Wiring Non-Isolated RS-485

Wire Colors for Vaisala Cables

Pin	Connection on Port I	Connection on Port II	Wire Color
1	VDC supply+	VDC supply+	Brown
2		RS-485 D0-	White
3	GND	GND	Blue
4		RS-485 D1+	Black

Note the following:

- The ground pin (pin 3) on both ports is internally connected to each other and to transmitter chassis. The chassis connection is through a 1 M Ω resistor and a 40 nF capacitor that are connected in parallel.
- The frames of the M8 connectors are not connected to the chassis.

Alternate Wiring for Power Supply

If necessary, you can provide supply voltage using Port I, and only wire RS-485 for Port II. **Do not supply power from both ports**.

Figure 9 Wiring Power Supply Using Port I

Stabilization of Dewpoint Reading After Installation

After installation, the transmitter will have a small amount of moisture inside it. In still, dry gas it takes a long time until vapor pressure inside the measurement cell reaches equilibrium with the main gas tank. It is not unusual for the stabilization of the dewpoint reading to take several days after installation.

CHAPTER 5 OPERATION

This chapter contains information that is needed to operate the DPT145.

Transmitter Start-Up

When the transmitter is connected to power supply, there is a delay of five seconds as the transmitter starts up. After the start-up is complete, the transmitter will behave according to the configured serial mode:

- In STOP mode, the transmitter outputs the transmitter model and software version.
- In RUN mode a measurement output starts immediately.
- In POLL mode the transmitter does not output anything after power-up.
- In MODBUS mode, the transmitter does not output anything after power-up.

For a description of the modes, see section Set Serial Line Operating Mode on page 41.

For a description of how the diagnostic functions of the sensor affect the availability of live measurement at start-up, see section DPT145 Start-up Sequence on page 20.

Serial Communication

Connecting to the Serial Interface

DPT145 can be connected to a PC using the RS-485 line on Port II. It is recommended that you use the USB service cable (Vaisala order code 219690) for the connection, since the cable also provides the operating power from the USB port.

If you have not used the USB service cable before, install the driver that came with the cable. Refer to section Installing the Driver for the USB Service Cable below for detailed instructions.

Installing the Driver for the USB Service Cable

Before taking the USB service cable into use, you must install the provided USB driver on your PC. When installing the driver, you must acknowledge any security prompts that may appear. The driver is compatible with Windows 2000, Windows XP, Windows Server 2003, and Windows Vista.

- 1. Check that the USB service cable is not connected. Disconnect the cable if you have already connected it.
- 2. Insert the media that came with the cable.
- 3. Execute the USB driver installation program (setup.exe), and accept the installation defaults. The installation of the driver may take several minutes.
- 4. After the driver has been installed, connect the USB service cable to a USB port on your PC. Windows will detect the new device, and use the driver automatically.
- The installation has reserved a COM port for the cable. Verify the port number, and the status of the cable, using the Vaisala USB Instrument Finder program that has been installed in the Windows Start menu.

Windows will recognize each individual cable as a different device, and reserve a new COM port. Remember to use the correct port in the settings of your terminal program.

There is no reason to uninstall the driver for normal use. However, if you wish to remove the driver files and all Vaisala USB cable devices, you can do so by uninstalling the entry for Vaisala USB Instrument Driver from the Add or Remove Programs (Programs and Features in Windows Vista, or later) in the Windows Control Panel.

Terminal Application Settings

The serial interface settings of the DPT145 RS-485 line are presented in Table 4 below.

Property	Description / Value
Baud rate	19200
Parity	None
Data bits	8
Stop bits	1
Flow control	None

Table 4Default Serial Interface Settings

The steps below describe how to connect to the DPT145 using the PuTTY terminal application for Windows and a USB serial interface cable:

- 1. Connect the USB serial interface cable between your PC and the RS-485 port of DPT145 (port II).
- 2. Start the PuTTY application.
- 3. Select the **Serial** settings category, and check that the correct COM port is selected in the **Serial line to connect to** field.

Note: You can check which port the USB cable is using with the **Vaisala USB Instrument Finder program** that has been installed in the Windows Start menu.

- 4. Check that the other serial settings are correct for your connection, and change if necessary. **Flow control** should be set to **None** unless you have a reason to change it.
- 5. Click the **Open** button to open the connection window and start using the serial line.

Note: If PuTTY is unable to open the serial port you selected, it will show you an error message instead. If this happens, restart PuTTY and check the settings.

6. You may need to adjust the Local echo setting in the Terminal category to see what you are typing on the serial line. To access the configuration screen while a session is running, click the right mouse button over the session window, and select Change Settings... from the pop-up menu.

If the DPT145 is in Modbus mode, to access the serial port command interface, follow the procedure in Accessing Serial Port Command Interface from Modbus Mode on page 45.

PuTTY Configuration			? 🗙	
Category:				
	Options controlling local se	rial and USB lines		
	Select a serial/USB line			
vvindow ·································	Serial or USB line to connect to	COM3		
Data Proxy		USB Finder		
Telnet	Configure the serial/USB line			
	Speed (baud)	19200		
	Data <u>b</u> its	8		
	Stop bits	1		
	Parity	None	~	
	<u>L</u> onty	None		
	Flow control	None		
About <u>H</u> elp		n <u>C</u> ance	el	
	_			200-

List of Serial Commands

All commands can be issued either in uppercase or lowercase. In the command examples, the keyboard input by the user is in **bold** type.

The notation <cr> refers to pressing the carriage return (**Enter**) key on your computer keyboard. Enter a <cr> to clear the command buffer before starting to enter commands.

Command	Description		
?	Show device information		
??	Show device information (overrides poll mode)		
ADDR [0 255]	Show or set transmitter address		
CLOSE	Close the temporary connection and return the		
	device to POLL mode		
ERRS	Display the currently active errors		
FORM [modifier string]	Set output format		
FRESTORE	Restore factory settings		
HELP	Show list of currently available serial commands		
INTV [0 255 S/MIN/H]	Set the continuous output interval (for RUN mode		
	and R command)		
OPEN [0 255]	Open a line to transmitter at defined address		
R	Start the continuous outputting		
RESET	Reset the transmitter		
S	Stop the continuous outputting		
SDELAY [0 255]	Set response sending delay		
SEND [0 255]	Output readings once (specify address for		
	transmitters in POLL mode)		

Table 5List of Serial Commands

Command	Description
SERI [baud p d s]	Show or set the serial interface settings
SMODE [mode]	Show or set startup serial mode:
	RUN, STOP, POLL, or MODBUS
SNUM	Display transmitter serial number
TIME	Show transmitter uptime
UNIT [m/n]	Select metric or non-metric units
VERS	Show transmitter firmware version
PNORMT [-100 100]	Show or set the temperature for pressure
	normalization
MIXRATIO [0 100]	Show or set ratio (%) of SF ₆ in the measured
	environment
N2MOLW [weight]	Show or set molecular weight of other gas

Device Information

Show Device Information

The ? command outputs a listing of device information.

?<cr>

Command ?? is a similar command that is designed to be used if the transmitter is in POLL mode but its address is unknown. The transmitter will respond to the ?? command even while in POLL mode. Do not use the ?? command if you have more than one transmitter on an RS-485 line.

Example:

?		
DPT145 1.0.23		
Serial number	:	F4040007
Batch number	:	F3420050
Module number	:	F3410001
Sensor number	:	F1610000
Cal. date	:	20110907
Cal. info	:	Vaisala/HEL
Time	:	02:41:01
Serial mode	:	STOP
Baud P D S	:	19200 N 8 1
Output interval	:	5 S
Serial delay	:	10
Address	:	0
Mixing ratio	:	100.00% SF6 and 0.00% ideal gas
Ideal gas MolW	:	2.8013401e-02 kg/mol

Show Currently Active Errors

Use the **ERRS** command to display the currently active transmitter error messages. Possible errors and their causes are listed in Table 11 on page 51.

ERRS<cr>

Example:

```
errs
No errors
```

Example (one active error, caused by physical damage to the sensor):

```
errs
T MEAS error
```

Show Command List

Use the **HELP** command to list the serial commands:

HELP<cr>

Example:

help ADDR CLOSE ERRS FORM FRESTORE INTV OPEN R RESET SDELAY SEND SERI SMODE SNUM TIME UNIT VERS PNORMT MIXRATIO N2MOLW

Show Firmware Version

VERS<cr>

Example:

vers DPT145 1.0.23

Show Serial Number

SNUM<cr>

Example:

```
snum
Serial number : F4040007
```

Serial Line Output Commands

Start Measurement Output

Use the **R** command to start the continuous outputting of measurement values as an ASCII text string to the serial line. The format of the measurement message is set with the **FORM** command.

R < cr >

Example (measurement message in default format):

```
r
Tdf= 12.5 'C Tdfatm= 13.6 'C H2O= 15561 ppm P= 0.947 bara
Pnorm= 0.943 bara Rhoo= 1.1 kg/m3 T= 24.5 'C
Tdf= 12.5 'C Tdfatm= 13.6 'C H2O= 15563 ppm P= 0.947 bara
Pnorm= 0.942 bara Rhoo= 1.1 kg/m3 T= 24.5 'C
Tdf= 12.5 'C Tdfatm= 13.5 'C H2O= 15555 ppm P= 0.948 bara
Pnorm= 0.943 bara Rhoo= 1.1 kg/m3 T= 24.5 'C
...
```

Outputting the results continues in intervals issued with the command **INTV**. You can stop the output by pressing the **Esc** key, or with the command **S**. Since the interface is half-duplex, you must enter the commands when the transmitter is not outputting.

Stop Measurement Output

You can stop the measurement output by pressing **ESC**, or with the **S** command:

S<cr>

Set Output Interval

Use the **INTV** command to change the output interval of the automatically repeating measurement messages. The measurement messages are repeated in the RUN mode, or after the **R** command has been given.

INTV [n xxx] < cr >

where

n = time interval, range 0 ... 255 xxx = time unit = "S", "MIN", or "H"

The shortest output interval (with n = 0) outputs the measurement messages as quickly as the transmitter's internal measurement cycle produces them, without additional delay.

Example:

```
intv 1 min
Output interval: 1 MIN
```

Output a Reading Once

Use the **SEND** command to output a single measurement message. The output message is sent in the format that has been set using the **FORM** command.

```
SEND [address]<cr>
```

where

address = Address of the transmitter, range $0 \dots 255$.

Specifying the address is only necessary if the target transmitter is in POLL mode, and has not been accessed with the OPEN command.

Example:

```
send
Tdf= 15.4 'C Tdfatm= 16.2 'C H2O= 18539 ppm P= 0.959 bara
Pnorm= 0.951 bara Rhoo= 1.1 kg/m3 T= 25.4 'C
```

Configuring Measurement Parameters

Set Mixing Ratio

Use the **MIXRATIO** command to set the mixing ratio of SF_6 and the other gas.

MIXRATIO [ratio]<cr>

where

ratio = Amount of SF_6 in the measurement environment, range $0 \dots 100\%$.

Example:

mixratio 50 MIX RATIO : 50.00 %

Set Molar Weight of Other Gas

Use the N2MOLW command to set the molar weight of the other gas (not SF_6) in the measurement environment.

N2MOLW [weight] <cr>

where

weight = Molar weight of the other gas in kg/mol. The default is 2.8013401e-02, which is the molar mass of N₂.

Example:

```
n2molw
OTHER GAS MOLAR: 2.8013401e-02 kg/mol ?
```

Set Pressure Normalization Temperature

Use the **PNORMT** command to set the temperature that is used to calculate the normalized pressure parameter.

PNORMT [t]<cr>

where

t = Temperature in Celsius, range -100 ... 100. The default is 20.

Example:

pnormt 20 P_NORM_T

: 20.00 'C

Set Measurement Output Format

Use the serial line command **FORM** to change the measurement message sent by the transmitter. You can freely define the output message to include the desired parameters, formatting options, text strings, and additional fields.

FORM [modifier string]<cr>

where

modifier string = String of parameters and modifiers that defines the output format, length 1 ... 153 characters. Maximum length may be shorter when text strings are used. See Table 6 and Table 7 on page 40, and examples below.

You can return to the default format using the "FORM /" command.

Example of default output (continuous output from RUN mode):

```
Tdf= 8.1 'C Tdfatm= 8.2 'C H2O= 10870 ppm P= 1.002 bara
Pnorm= 0.992 bara Rhoo= 6.0 kg/m3 T= 22.8 'C
Tdf= 8.1 'C Tdfatm= 8.2 'C H2O= 10878 ppm P= 1.002 bara
Pnorm= 0.992 bara Rhoo= 6.0 kg/m3 T= 22.8 'C
...
```

Command to set output format as Tdf and P with Modulus-256 checksum:

form 3.1 "Tdf=" Tdf U3 3.3 "P=" P " " U4 " " CS2 \r \n

Output example:

Tdf= 12.5'C P= 0.949 bara 72 Tdf= 12.5'C P= 0.950 bara 6A ...

Command to set output format as Tdf and P, with **start of text** (ASCII character 002) and **end of text** (003) ASCII codes, and without line feed and carriage return at the end:

form #002 3.1 "Tdf=" Tdf U3 3.3 "P=" P " " U4 #003

Output example (ASCII codes not visible here):

```
Tdf= 11.6'C P= 0.952 baraTdf= 11.6'C P= 0.951 baraTdf=
11.6'C P= 0.951 baraTdf= 11.6'C P= 0.950 baraTdf= 12.5'C
P= 0.951 baraTdf= 12.3'C P= 0.952 bara
...
```

Measured Parameter	Abbreviation in FORM Command
Dewpoint/frost point temperature	Tdf
Dewpoint/frost point temperature, converted to atmospheric pressure	Tdfa
ppm moisture, by volume	H20
Pressure, absolute	P
Pressure, normalized	Pnorm
Density	Rhoo
Temperature	Та

Table 6FORM Command Parameters

Table 7FORM Command Modifiers

Modifier	Description
x.y	Length modifier (number of digits and decimal places)
#t	Tabulator
#r	Carriage-return
#n	Line feed
""	String constant, length 1 15 characters
#xxx	ASCII code value (decimal) of a special character;
	for example, #027 for ESC
ADDR	Transmitter address (0 255)
ERR	Currently active transmitter errors in a four bit field:
	bit0bit1bit2bit3bit4
	bit0 T MEAS error
	bit1 P out of range error
	bit2 Fmeas error
	bit3 Flash csum error
SN	Transmitter serial number
TIME	Time since transmitter was started or reset
Ux	Shows the name of the measurement unit using "x" number
	of characters. For example, U3 shows the name of the
	measurement unit with three characters
CS2	Modulus-256 checksum of message sent so far, ASCII
	encoded hexadecimal notation
CS4	Modulus-65536 checksum of message sent so far, ASCII
	encoded hexadecimal notation
CSX	NMEA xor-checksum of message sent so far, ASCII encoded
	hexadecimal notation

Select Unit

Use the UNIT command to select metric or non-metric output units.

UNIT [x] < cr >

where

x = Selects the unit type to output: m = metric units, for example, Celsius n = nonmetric units, for example, Fahrenheit

Example:

```
unit m
Units : Metric
```

Configuring Serial Line Operation

Set Serial Line Operating Mode

Use the **SMODE** command to set the start-up operating mode of the serial line.

SMODE [mode]<cr>

where

mode = STOP, RUN, or POLL.

Mode	Measurement Output	Available Commands
STOP	Only with the SEND command.	All (default mode).
RUN	Automatic output.	Only command S .
POLL	Only with the SEND [<i>addr</i>] command.	SEND [<i>addr</i>] and OPEN [<i>addr</i>]. Other commands available after opening a line to the transmitter using the OPEN command.
		Use with RS-485 buses where multiple transmitters can share the same line.
MODBUS	Must be read from the transmitter using MODBUS protocol.	Modbus protocol only; see Appendix A, Modbus Reference on page 60.

Table 8Selection of Output Modes

If the Modbus mode is activated, serial port commands cannot be used with the device. To access the serial port command interface, follow the procedure in Accessing Serial Port Command Interface from Modbus Mode on page 45. Selected output mode will be activated at next reset or power up.

Example:

smode poll
Serial mode : POLL

Set Serial Line Settings

Use the **SERI** command to set the serial line settings. The new settings will be taken into use when the transmitter is reset or powered up.

Note that changing the serial line settings will slightly alter how the transmitter works with the MI70 indicator. If you are not using the default settings of 19200 N 8 1, you will have to power off the MI70 before it can find the transmitter (you will not be able to connect it on-the-fly).

When using the Modbus protocol, the baud rate must be 9600 or higher.

SERI [b p d s] < cr >

where

```
b = baud rate (300, 600, 1200, 2400, 4800, 9600, or 19200)

p = parity (n = none, e = even, o = odd)

d = data bits (7 or 8)

s = stop bits (1 or 2)
```

Example:

seri 9600 e 7 1 Baud P D S : 9600 E 7 1

Set Transmitter Address

To operate in the POLL mode, the transmitter must have an address. If multiple transmitters share the same serial line, each transmitter must have a different address.

For a description of the serial interface modes, see section Set Serial Line Operating Mode on page 41.

ADDR [address]<cr>

where

address = Transmitter address, range $0 \dots 255$.

Example:

addr Address : 0 ?

Set Serial Line Response Time

With the **SDELAY** command you can set delay (response time) of the serial line, or view the currently set delay value. Increasing the value by one increases the delay by 4 milliseconds. For example, the default value is 10 which equals a ~40 ms answer delay.

SDELAY [*delay*]<cr>

where

delay = Serial line delay, range $0 \dots 255$.

Example:

sdelay 20
Serial delay : 20

Other Commands

Opening the Transmitter in POLL Mode

Use the **OPEN** command to connect to a transmitter that is in POLL mode.

OPEN [address]<cr>

where

address = Transmitter address, range $0 \dots 255$.

Example (target transmitter in POLL mode, with address 5):

open 5
DPT145 5 line opened for operator commands

Closing the Connection to a Transmitter in POLL Mode

The CLOSE command closes the connection to a transmitter.

CLOSE<cr>

Example:

close line closed

Show Transmitter Uptime

Use the **TIME** command to show how long the transmitter has been operating since it was last reset or powered up.

TIME<cr>

Example:

time Time : 00:51:41

Reset Transmitter

Use the **RESET** command to reset the transmitter.

RESET<cr>

When the **RESET** command is given, the transmitter will restart as if it had just been powered on. All transmitter settings are retained. The serial line mode of the transmitter will be set to the mode that was set using the **SMODE** command.

Restore Factory Settings

Use the **FRESTORE** command to restore the factory settings to the transmitter. All user settings will be lost.

FRESTORE <cr>

Modbus Communication

Addressing with Modbus Protocol

The Modbus variant used in DPT145 communication is Modbus RTU. An example of Modbus addressing is shown below.

Request:	0x01	0x03	0x00	0x04	0x00	0x02	0x85	0xCA	
	addr.	func.	reg	j. 5	2 reg	isters	CRC	check	
Response:	0x01	0x03	0x04	0xBC	0xC0	0x41	0xC2	0x6E	0x5E
	addr.	func.	len.	reg	1. 5	reg	. 6	CRC	check

For a list of available Modbus registers, see Appendix A, Modbus Reference on page 60.

Accessing Serial Port Command Interface from Modbus Mode

You cannot change configuration settings (other than Modbus address) while the device is in the Modbus mode. To use the configuration commands on a Modbus-enabled device:

- 1. Connect the USB service cable to the PC and install the driver, if necessary.
- 2. Open the terminal program and open a connection to the corresponding COM port using settings 19200, 8, N, 1, no flow control.
- 3. Plug the service cable to the connector II of the instrument.
- 4. In less than five seconds, send a hash character (#) and carriage return (Enter) to the device using the terminal program. The device is now ready for configuration commands. The Modbus mode is restored on next power-up unless Modbus is disabled with command SMODE.

For example, if you want to deactivate the Modbus mode on a DPT145 device, follow the procedure above and deactivate the Modbus mode with the command **SMODE STOP**. On subsequent power-ups, the serial command interface will be activated.

Configuration Commands Related to Modbus

In addition to enabling the Modbus protocol in the device, Modbus over RS-485 needs the following software settings: serial bit rate, parity, number of stop bits, and Modbus device address.

Use the service commands listed in Table 9 below to configure the Modbus RTU using the USB service cable.

Service Command	Description
SMODE MODBUS	Enable Modbus communication protocol.
	See section Set Serial Line Operating Mode on page
	41.
SERIbp8s	Change baud rate and parity.
	b = baud rate (minimum 9600 when using Modbus)
	p = parity (E, N, or O)
	8 = number of data bits must be 8
	s = number of stop bits (2 if parity is N, 1 otherwise*)
	See section Set Serial Line Settings on page 42.
ADDR a	Set Modbus address.
	a = new address (0255)**
	See section Set Transmitter Address on page 42.
SDELAY d	Add extra Modbus response delay.***
	d = new delay in units of $1/250$ seconds (0255)
	See section Set Serial Line Response Time on page 43.

Table 9Configuration commands for Modbus RTU

* Modbus specification defines that two stop bits must be used if parity is N.
** Setting address to zero switches the instrument offline from the Modbus bus.
Addresses 248 ... 255 are not supported by the Modbus standard but DPT145 works with them.

*** Extra response delay can be used, for example, to avoid problems caused by direction-switching delays in bus converters.

NOTE The instrument must be switched off and on before the configuration changes made with the service cable take effect.

CHAPTER 6 MAINTENANCE

This chapter provides information that is needed in basic maintenance of the DPT145.

Periodic Maintenance

Cleaning

The body of the transmitter can be cleaned by wiping with a moistened lint-free cloth. Do not immerse the transmitter in liquid, and do not use cleaning agents or solvents.

Calibration and Adjustment

DPT145 is fully calibrated as shipped from factory. If there is a reason to believe that the device is not within the accuracy specifications, you can perform a field check using the DM70 hand-held dewpoint meter, or an MI70 indicator with another DPT145.

If the field check indicates that the DPT145 is not within its accuracy specifications, contact a Vaisala Service Center or your local Vaisala representative to have the DPT145 adjusted.

Field Check Using an MI70 Indicator

Vaisala recommends the following equipment for field checking:

- A fully charged MI70 indicator (the measurement display that is included in the DM70 package)
- A calibrated reference probe that is suitable for the intended measurement environment and dewpoint range. The DMP74C probe is recommended for checking the dewpoint and temperature measurement accuracy. For checking all parameters, you can use another DPT145 transmitter as a reference.
- You also need a connection cable (Vaisala order code: 219980) to connect the DPT145 to the MI70 indicator. If you have two DPT145 transmitters, you need two cables.

NOTE In the procedure below, the readings of the transmitter and the reference probe are checked simultaneously. You can also check the reference probe and the DPT145 separately if they cannot be connected at the same time.

Perform the check as follows:

- 1. Place the reference probe and the DPT145 in the reference environment.
- 2. Connect the reference probe and the DPT145 to the MI70 indicator:
 - Reference probe to Port I
 - DPT145 to Port II
- 3. Turn on the MI70 indicator.
- 4. Check and adjust the environment settings if prompted. Refer to the DM70 User's Guide for the settings of the DMP74C probe.
- Disable the Auto power off function of the MI70 indicator to prevent the indicator from powering off in the middle of the check. Check the setting in the Settings - User Interface menu, and change if necessary.

6. The MI70 can display three parameters at one time. To compare the readings of the DPT145 and the reference probe, select the desired parameter from the **Display** – **Quantities and Units** menu of the MI70. Select the same parameter from port I and II, and the delta parameter that shows the difference between the two. For example, $\Delta T_{d/f}$ shows the difference in dewpoint between the two probes.

_____ 1108-039

Figure 11 Comparing Dewpoint Readings on MI70

- 7. After the measurement has stabilized, check the difference between the readings. It will give you an indication of the approximate drift of the DPT145 and its need for calibration. The difference between the readings should be no greater than the combined measurement uncertainty of the DPT145 and the reference probe.
- 8. Write down the results and repeat the comparison for each parameter you want to check.

	9. If adjustment is required, contact a Vaisala Service Center or your local Vaisala representative to have the DPT145 adjusted.
NOTE	Some notes on using the MI70 indicator with the DPT145:
	- If you disconnect the DPT145 while the MI70 indicator is on, the quantities measured will remain on the screen, but no measurement will be shown.
	- Temperature measured by the DPT145 is shown as parameter Ta (not T) in the MI70.
	- The messages from the transmitter will appear in English even if the MI70 has been set to another language.

Repair Maintenance

There are no user serviceable parts inside the transmitter. If there is a problem with your transmitter that you are unable to solve yourself or with the help of the Vaisala Helpdesk, contact a Vaisala Service Center to have the transmitter repaired.

For troubleshooting instructions and Vaisala contact information, see Chapter 7, Troubleshooting, on page 50.

CHAPTER 7 TROUBLESHOOTING

This chapter describes common problems, their probable causes and remedies, and provides contact information for technical support.

Solving Typical Problems

Some problems can be solved by simply resetting the transmitter. You can reset the transmitter by disconnecting the power or issuing the **RESET** command using the service port.

If resetting does not help, and if the problem is related to transmitter software or settings, you can restore the factory configuration of the transmitter by issuing the **FRESTORE** command. If you are unable to solve your problem with the transmitter, contact Vaisala technical support. See section Technical Support on page 52.

Problem	Possible Causes and Solutions
Dewpoint reading is not stable after installation: reading indicates slow drying.	This is normal behavior after installation. See section Stabilization of Dewpoint Reading After Installation on page 29.
Pressure reading is not stable: reading indicates falling pressure. Dewpoint temperature may be rising.	Leak in the measurement environment. Locate and repair the leak.
Transmitter outputs stars "****" instead of measurement data	Possible causes: damaged sensor, incorrect supply voltage, and unsuitable measurement environment.
	Power cycle or reset the transmitter, and see if the problem continues. Check the active errors using the ERRS command. Check the power supply.
Unable to access transmitter on the RS-485 line.	Possible causes: Incorrect wiring, unknown serial settings, transmitter in POLL mode with unknown address.
	Check wiring. Try connecting as instructed in section Unknown Serial Settings on page 52. Issue the ?? command to make the transmitter respond in POLL mode.

Table 10Troubleshooting Table

Error Messages

The transmitter has error codes that can be displayed on the serial line using the ERRS command. See section Show Currently Active Errors on page 35.

Table 11 **Error Messages**

Error Message	Possible Cause and Solution
T MEAS error	MPS1 sensor damaged or missing.
F meas error	Contact a Vaisala Service Center.
Voltage error	Supply voltage out of range.
Voltage too low error	Check and correct.
Program flash check sum error	Internal transmitter error. If the error
Parameter flash check sum error	remains after a reset and restoring the
INFOA check sum error	factory settings, contact a Vaisala
SCOEFS check sum error	Service Center.
CURRENT check sum error	

Unknown Serial Settings

If you are not sure what the current serial settings of your transmitter are, follow the steps below to connect to the transmitter. This procedure assumes you have the USB service cable available.

For more information on the USB service cable and the PuTTY terminal application, see section Serial Communication on page 31.

- 1. Connect the USB service cable to your PC, but do not connect it to the transmitter yet.
- 2. Start a terminal application and open a terminal session using the default serial settings of 19200 8 N 1.
- 3. Plug the USB service cable into the transmitter, and immediately send the hash character # to the serial line:

#

- 4. The normal startup of the transmitter is now interrupted, and the transmitter is available for commands with the default serial settings.
- 5. You can now check the transmitter's information by issuing the ? command:

?

The transmitter's currently stored serial settings are visible on the line marked **Baud P D S**.

Technical Support

Provide at least the following supporting information:

- Name and model of the product in question
- Serial number of the product
- Name and location of the installation site
- Name and contact information of a technically competent person who can provide further information on the problem.

CHAPTER 8 TECHNICAL DATA

This chapter provides the technical data of the DPT145.

Specifications

Parameter	Measured Range
Dewpoint	-50 +30 °C (-58 +86 °F)
Pressure, absolute	1 12 bar (14.5 174 psi)
Temperature	-40 +80 °C (-40 +176 °F)

Table 13 **Calculated Parameters**

Parameter	Measured Range
Pressure, normalized to 20 °C (68 °F)	1 12 bara (14.5174 psia)
SF ₆ or SF ₆ /N ₂ mixture density	0 100 kg/m ³
ppm moisture, by volume	40 40 000 ppm
Dewpoint, converted to atmospheric	-65 +30 °C (-85 +86 °F)
pressure	

Table 14 Performance

Property	Description / Value
Dewpoint accuracy	±3 °C (±5.4 °F), see Figure 12 on
	page 55
Dewpoint stability	typical drift < 2 °C (3.6 °F)/5a
Pressure accuracy at 23 °C (73.4 °F)	±0.04 %FS
Pressure temperature dependence	±0.01 bar/10 °C (18 °F)
Temperature accuracy	
0 +40 °C (+32 +104 °F)	±0.5 °C (± 0.9 °F)
-40 +80 °C (-40 +176 °F)	±1 °C (± 1.8 °F)
Density accuracy (pure SF ₆ , 1 10 bara)	
0 40 °C (+32 +104 °F)	±1 %FS
-40 +60 °C (-40 +140 °F)	±2.2 %
ppm accuracy, typical	
(5 1000 ppm, 7 bar)	±(7 ppm + 15 % of reading)
Sensor response time	
Pressure response time	< 1 s
Dewpoint response time*	
63% [90%] at 20°C and 1 bar	
-50 -> -10 °C Tdf	5 s [10 s]
-10 -> -50 °C Tdf	10 s [2.5 min]

* system equilibrium related response time is typically longer

1107-032

Figure 12 DPT145 Dewpoint Measurement Accuracy

Table 15Operating Environment

Property	Description / Value
Operating temperature of electronics	-40 +60 °C (-40 +140 °F)
Pressure	0 50 bar (0725 psi)
Relative humidity	0 100 %
Measured gases	SF ₆ SF ₆ /N ₂ mixture

Table 16Outputs

Property	Description / Value
Digital output	RS-485, non-isolated, Vaisala protocol
Connector	4-pin M8

Property	Description / Value
Sensor	Vaisala MPS1 multiparameter sensor
Operating voltage	15 28 VDC
	20 28 VDC in cold temperatures
	(-4020 °C (-404 °F))
Supply current	
during normal measurement	20 mA
during self-diagnostics	max 300 mA pulsed
Housing material	AISI316L
Housing classification	IP65 (NEMA4)
	Weather shield to be used for
	continuous outdoor installations
Storage temperature range	
liansmiller only	$-40 \dots +80 C (-40 \dots +176 F)$
Mochanical connection	
	Malmkviat or Alatam C1/2" compatible
	connector
Woight (with DILO adaptor)	
Electromagnetic compatibility	Complies with EMC standard
	EN61326-1 Electrical equipment for
	measurement control and laboratory
	use - FMC requirements: Industrial
	environment
Tested levels	
EN/IEC 61000-4-2,	
Electrostatic Discharge	8kV con / 15kV air
EN/IEC 61000-4-3,	
RF field immunity	10V/m (80MHz-4.2GHz)
EN/IEC 61000-4-4,	
Electric Fast Transient	±2kV power and signal
EN/IEC 61000-4-5, Surge	±2kV power line to ground
	/ ±1kV signal line to ground
	and power line to line
EN/IEC 61000-4-6,	
Conducted RF Immunity	10Vemf power line and digital output
Mechanical vibration	
EN/IEC 60068-2-6,	
Fc Sinusoidial vibration	±6 g,
	5-500 Hz sweep 60 min/axis, 3-axis

Table 17General

Spare Parts and Accessories

Table 18 **DPT145 Spare Parts and Accessories**

Description	Order Code
Connection cable for MI70 Indicator	219980
/ DM70 Dewpoint Meter	
USB connection cable	219690
Protection plug for connector	218675SP
1.5 m shielded PUR cable with 90° connector	231519SP
3m shielded PUR cable with 90° connector	231520SP
5 m shielded PUR cable with 90° connector	231521SP
10 m shielded PUR cable with 90° connector	231522SP
3.0m shielded FEP cable with straight connector	226902SP
15 m shielded PUR cable with straight connector	236407SP
20 m shielded PUR cable with straight connector	235859SP
Weather shield	ASM210326SP

Dimensions in mm

1108-017

DPT145 with DILO DN20 Adapter

Figure 15 DPT145 with ABB Malmkvist Adapter

Figure 16 DPT145 with Alstom G1/2" Adapter

Shield

APPENDIX A MODBUS REFERENCE

This appendix describes the Modbus protocol implementation of the DPT145 transmitters.

Default Communication Settings

Table 19 below shows the default communication settings when Modbus is enabled at the factory.

Setting	Default Value	Configuration Command for Changing the Value)*
Bit rate	19200	SERI
Number of data bits	8	
Parity	E	
Number of stop bits	1	
Device address	240	ADDR
Response delay	0	SDELAY
Communication mode	MODBUS	SMODE

Table 19 Default Communication Set	ttings
------------------------------------	--------

* See Table 5 on page 33.

NOTE

You can also change device address with Modbus itself (register 1537).

Supported Modbus Functions

		11	
Function Code (decimal)	Function Code (hexadecimal)	Function Name (as defined by the specification)	Notes
3	03	Read Holding Registers	See Table 21 on page 61 for available registers.
16	10	Write Multiple Registers	See Table 21 on page 61 for writable registers.
43 14	2B 0E	Read Device Identification	See Table 22 on page 62 for available device identification objects.

Table 20	Supported	Function	Code
Table 20	Supported	Function	Cod

NOTE

After power-up, wait for five seconds before sending Modbus requests.

Modbus Register Map

Logical Address (decimal)	PDU Address (hexadecimal)	Register Description		Data Format	Register Type	Notes
5	00 04	T (measured)	LSW	32-bit	read-only	°C
6	00 05		MSW	float		
7	00 06	T _{d/f} (measured)	LSW	32-bit	read-only	°C
8	00 07		MSW	float	_	
11	00 0A	T _{d/f} (atm) (measured)	LSW	32-bit	read-only	°C
12	00 0B		MSW	float	_	
21	00 14	H ₂ O (measured)	LSW	32-bit	read-only	ppm _v
22	00 15		MSW	float	_	
45	00 2C	P (measured)	LSW	32-bit	read-only	bara
46	00 2D		MSW	float		
47	00 2E	ρ (measured)	LSW	32-bit	read-only	kg/m ³
48	00 2F		MSW	float		
49	00 30	P _{norm} (measured)	LSW	32-bit	read-only	bara
50	00 31		MSW	float		
513	02 00	Fault status		16-bit boolean	read-only	1 = no errors
514	02 01	Online status		16-bit boolean	read-only	1 = online data available
516	02 03	Error code	LSW	32-bit bit	read-only	0 = no errors
517	02 04		MSW	field		
775	03 06	Molar mass of other	LSW	32-bit	read/write	kg/mol
776	03 07	gas (set value)	MSW	float		
781	03 0C	Gas mixing ratio	LSW	32-bit	read/write	0100 % of
782	03 0D	(set value)	MSW	float		SF ₆
783	03 0E	Pressure	LSW	32-bit	read/write	-100 100°C
784	03 0F	normalization temperature (set value)	MSW	float		
1283	05 02	Automatic purge on/off*		16-bit boolean	read/write	1= automatic purge on
1284	05 03	Start-up purge on/off*		16-bit boolean	read/write	1 = start-up purge on
1285	05 04	Purge in progress*		16-bit boolean	read/write	1 = purge in progress, write 1 for manual start
1537	06 00	Address		16-bit integer	read/write	1255 (1 247 allowed in Modbus)

Table 21	Modbus	Register	Man
	Munus	Register	map

*Device specifications are valid only if purge functions are kept enabled. Do not modify registers 1283, 1284, and 1285. Regular purge is needed to guarantee accurate measurements. Modify only if instructed to by Vaisala.

PDU address	Actual address bytes used in a Modbus Protocol data unit	
LSW	Least significant word (bits 15 0)	
MSW	Most significant word (bits 31 16)	
16-bit integer	Numeric value in range 0 65535	
16-bit boolean	Numeric value, 0 or 1	
32-bit bit field	32 individual values, each 0 or 1	
32-bit float	Floating point, IEEE 754 format	
read-only	Register value cannot be changed with Modbus functions	
read/write	Register value can be changed with Modbus functions	

Object Id (decimal)	Object Id (hexadecimal)	Object Name (as defined by the specification)	Example
0	00	VendorName	Vaisala
1	01	ProductCode	DPT145
2	02	MajorMinorVersion	1.3.27
3	03	VendorUrl	http://www.vaisala.com
4	04	ProductName	Vaisala Multiparameter Transmitter DPT145 for SF6 Gas
128	80	SerialNumber*	D0710040
129	81	CalibrationDate*	2009-08-07
130	82	CalibrationText*	Vaisala/HEL

Table 22Device Identification Objects

*Vaisala-specific device information object

Both stream access and individual access to the device identification NOTE objects are supported.

上海博众测量技术有限公司

Bodhi (Shanghai) measurement technology Co.,Ltd. NO.32,ShuPing Road,JiadingDistrict,ZIP201808, Shanghai R.P.China TEL: 0086 21 6630 8161/62/63 FAX: 0086 21 6630 8167

www.bodhi-mt.com